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Abstract— In [1] some techniques for generating new 

solutions from known solutions have been presented. In this 

paper, applying one of these techniques to the Schwarzschild 

constant density solution we have generated a 1-parameter 
family of new solutions.  
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I. INTRODUCTION  

    Exact analytic solutions of Einstein’s equations are difficult 
because of the high nonlinearity of the equations. In this paper 
we consider static spherically symmetric perfect fluid 
solutions. Even for this simplest case only few solutions 
(about 16) are known which fulfill all the requirements for 
physical acceptability of the solutions. For physical 
acceptability static perfect fluid sphere solutions are required 
to satisfy the following properties:  

(1) Both p(r) and )( r  are required to be positive definite at 

the centre of symmetry r = 0. 

(2) p(r) is required to vanish at some finite radius R > 0.  

(3) Both p(r) and )( r  should be decreasing functions of r.  

(4) It is required that 1
d

dp
.  

For a static spherically symmetric system metric of space-
time in curvature coordinates has the following form  
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where 
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θdsind θd  . For the metric (1), (r, r) and 

),(  components of Einstein’s equations give                
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where 
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If we put 
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 , then equation (3) can be expressed in 

terms of )( r as follows                              
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(t, t) component of Einstein’s equation gives  
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Also the (r, r) component of Einstein’s equation can be cast 
into the form  
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The inequalities (5) and (6) require that )0(  must be a finite 

constant such that 0)0(   and 0)0(  . Also the 

necessary and sufficient condition that the solution have a 
regular boundary surface with Schwarzschild vacuum exterior 
at r = R > 0 is given by p(R) = 0. Putting m(R) = M it follows 
from (6) that 
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Now the conditions on )( r for the solutions to be regular 

at r = 0 require that N(0) should be a finite constant such that 

0)0( N  and 0)0( N .  

II. GENERATION OF SOLUTIONS WHICH ARE REGULAR AT R = 0 

Equation (3) is a first order linear differential equation in 
f(r), (and hence m(r)), which can be solved if N(r) is chosen. If 
N(r) is chosen in such a way that it satisfies the conditions 
mentioned in Section-1 the solutions obtained will be regular at 
r = 0. [However this does not ensure the fulfillment of the other 
requirements for the solutions to be physically acceptable].  

In the following we demonstrate this by constructing some 
exact known solutions.  

Let N(r) = 22
)1(

n

ar  , where n is a positive integer. Then 

N(0) = 1, 0)0( N , 0)0( N .  

Then we obtain the following solutions:  

(1) Tolman IV solution for n = 1, [Ref. [2])  
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(2) Adler’s solution for n = 2, (Ref. [3]) 
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(3) H. Heintzmann IIa solution for n = 3, (Ref. [4])  
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(4) Durgapal IV solution for n = 4, (Ref. [5])  
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(5) Durgapal V solution for n = 5, (Ref. [5])  
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(6) Buchdahl I solution for n =
2

3
, [ for b ], (Ref. [6])  
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III. NEW SOLUTION FROM KNOWN SOLUTION 

          In [1] some techniques for generating new solutions 
from known solution have been presented. In the following we 
briefly describe these techniques.  

Equation (2) can be rewritten as follows,   
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Equation (7) can be regrouped as   
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Suppose  )(),(
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rGrN  is known solution of (7) i.e. we 

suppose that the equation   
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is satisfied. Then it can be verified that, (i) 
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rkrGN  , where k is a constant and  
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is a solution of (7).  

(ii)  
000

, GZN , where  
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is a solution of (7).  

The results can be viewed as the transformations 
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The composite transformations
3

T , 
4

T  defined by  

              ,,
0012003

GNTTGNT   

              
0021004

,, GNTTGNT   

also provide new solutions. Thus the 

transformations
1

T ,
2

T ,
3

T ,
4

T  defined when applied to a 

known solution provide new solutions.  

IV. NEW SOLUTIONS 

In this section we have generated a class of new solutions 
using the technique described in the previous section. For this 

we apply transformation 
1

T  to the Schwarzschild constant 

density solution [7] given by 
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where la ,  are arbitrary constants. Then from (10) we obtain  
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CONCLUSION 

Starting from the known solution 

)1,1(),(
22

00
ararlGN   we have generated a 1- 

parameter family of new solutions using the transformation T1. 

For each value of the parameter l  we get a new solution. For 

0l we get Tolman solution IV. Another class of solutions 
can be generated by applying the transformation T2 to the 
Schwarzschild constant density solution.  
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